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The problem on determination of the critical Rayleigh number at which the air contained in the pores of the
snow in a snow cover consisting of two layers with different thermophysical and structural parameters be-
comes unstable was formulated.

It was established in [1] that, in the case where the temperature gradient in a homogeneous cover of snow
exceeds any critical value, the humid air contained in the snow pores begins to execute a convective motion. This mo-
tion substantially influences the processes of heat and mass transfer in the snow cover and plays a significant role in
the metamorphism of the snow and in the formation of its structure.

A snow cover formed as a result of only one snowfall with a wind can be layered, and a snow cover formed
as a result of several snowfalls has, deliberately, a layered structure. Each newly fallen snow is transformed in the
process of metamorphism and forms an indivisible, fairly homogeneous and lengthy structure with definite thermo-
physical and strength properties. As a result of the formation of such a structure, the temperature field of the snow
cover changes and vapor flows appear at the boundaries of the snow layers.

Thus, in the majority of cases, intensive moisture flows appear and snow structures are formed in a snow
cover consisting of two or more layers of snow with more or less homogeneous thermophysical parameters. The study
of the conditions under which a convective air motion arises in multilayer snow covers is of both scientific and prac-
tical interest.

In the present work, we derived a system of linearized equations defining the thermal convection of air in a
two-layer snow and formulated the problem on determination of the critical parameters at which the air contained in
the snow pores becomes unstable.

Let us consider a snow cover consisting of two layers, in which the lower layer is bounded by the horizontal
planes z = 0 and z = h1 and the upper layer is bounded by the planes z = h1 and z = H. The parameters of the lower
snow layer will be denoted by the index "1", and the parameters of the upper snow layer will be denoted by index
"2." The z axis represents a vertical line directed upward from the lower base of the snow cover (see Fig. 1).

The linearized equation defining the air motion and the equation for the heat conduction in each snow layer
have the form [1]

∂Vi

∂t
 = − 

1
ρ0

 ∇pi − 
ν
σi

 Vi + βfigθiez , (1)

∂θi

∂t
 + MiVi∇θist = χi∆θi , (2)

where

Journal of Engineering Physics and Thermophysics, Vol. 80, No. 1, 2007

Kh. M. Berbekov Kabardino-Balkar State University, 173 Chernyshevskii Str., Nal’chik, 360004, Russia.
Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 80, No. 1, pp. 107–112, January–February, 2007. Original article
submitted June 2, 2005.

1062-0125/07/8001-0114 2007 Springer Science+Business Media, Inc.114



Mi = 
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


 ,   i = 1, 2 ;

here, the quantities M1 and M2 define the heat transferred by a flow of moisture-saturated air contained in the snow

pores; pi and θi are small perturbations of the snow pressure and temperature, and θist(z) are stationary temperature

perturbations in the lower and upper layers of the snow cover at the boundary conditions ∆θ1st(0) = θ10 and ∆θ2st(0)

= θ20 and the conjugation conditions θ1st(h1) = θ2st(h1) and λ1
dθ1st

dz



z=h1

 = λ1
dθ1st

dz



z=h1

:

θ1st = − 
θ10 − θ20

h1 + 
λ1

λ2
 h2

 z + θ10 , (3)

θ2st = − 
θ10 − θ20

h2 + 
λ2

λ1
 h1

 (H − z) + θ20 . (4)

The continuity equation for the air contained in the snow pores has the form

div V1 = 0 , (5)

div V2 = 0 . (6)

The linear system of equations (1)–(6) defines the thermal convection of air in a two-layer snow cover. The
boundary and conjugation conditions for this system are formulated in the following way. The lower boundary
(ground) of the snow cover is impenetrable; therefore, the vertical air-flow velocity component at this boundary is
equal to zero:

V1zz=0
 = 0 . (7)

When the upper boundary of the snow cover is penetrable for air, it is assumed that the horizontal pressure gradient
is equal to zero at z = H. Since Vx and Vy are equal to zero at the upper surface of the snow cover, from the conti-
nuity equation we obtain that

Fig. 1. Scheme of a two-layer snow cover.
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∂V2z

∂z



z=H

 = 0 . (8)

If the upper surface of the snow cover is impenetrable for air, which can take place in the case where it is covered
with a thin ice layer,

V2z (H) = 0 . (9)

The temperatures of the lower and upper boundaries are constant and, therefore, temperature perturbations are
absent:

θ1 (0) = 0 ,   θ2 (H) = 0 . (10)

Moreover, the continuity conditions should be fulfilled for the temperatures, mass flows, and heat flows at the inter-
faces between the layers:

θ1 (h1) = θ2 (h1) , (11)

f1V1zσ1
z=h1

 = f2V2zσ2
z=h1

 , (12)




λ1 

dθ1

dz
 + ρ0cp f1θ1stV1z







z=h1

 =



λ2 

dθ2

dz
 + ρ0cp f2θ2stV2z







z=h1

 . (13)

Near the instability boundary, where the velocities of the convective air flows are small (Vz D10−7 m/sec and
smaller), the Peclet number Pe = MV2H ⁄ χs << 1 and, therefore, the terms including velocities in the continuity equa-
tion (13) can be disregarded:

λ1 
dθ1

dz



z=h1

 = λ2 
dθ2

dz



z=h1

 . (14)

In the case where condition (13) is changed to condition (14), the problem becomes much simpler and
there appears a possibility of solving it analytically. To write Eqs. (1) and (2) in the dimensionless form, we will

introduce the dimensionless variables t = 
σ1

ν
 t
_
, z = Hz

_
, V1 = 

χ1
M1H

 V
__

1, V2 = 
χ1

M1H
 V
__

12, θ1 = γ10Hθ
__

1, θ2 = γ10Hθ
__

2,

p1 = 
ρ0νχ1

σ1
 p
_

1, and p2 = 
ρ0νχ1

σ1
 p
_

2 (the vinculums denote the dimensionless quantities) and determine γ10 from the

formula

γ10 = 
θ10 − θ20

h1 + 
λ1

λ2
 h2

 . (15)

In this case, the system of equations (1)–(2) takes the form (the vinculums are removed)

∂V1

∂t
 = − M1∇p1 + R1θ1ez − V1 , (16)

Pr1 
∂θ1

∂t
 = (V1ez) + ∆θ1 , (17)
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∂V2

∂t
 = − M1∇p2 − 

σ1

σ2
 V2 + R2θ2ez , (18)

Pr2 
∂θ2

∂t
 = (V2ez) + q∆θ2 . (19)

Here, Pr1 = 
νH2

χ1σ1
 is the Prandtl number for a homogeneous snow layer of thickness H; Pr2 = 

M1
M2

 
νH2

χ1σ
 = 

M1
M2

Pr1, q =

χ1

χ2
 
M1

M2
 = 

λ1

λ2
, R1 = 

βgf1H2M1σ1γ10

νχ1
, and R2 = 

βgf2H2M1σ1γ10

νχ1
 are dimensionless quantities that are analogous to the

Rayleigh number Ra.
Equations (5) and (6) in the dimensionless form remain unchanged:

div V1 = 0 ,  div V2 = 0 . (20)

Now, in the system of equations (16)–(20), V1, V2, p1, p2, θ1, and θ2 are dimensionless perturbations, and all the de-
rivatives are taken with respect to the dimensionless coordinates and time. Thus, small perturbations of the air equilib-
rium are defined by a system of linear homogeneous equations with constant coefficients.

In the system of equations (16)–(19), the pressures p1 and p2 as well as the horizontal velocity components
V1x, V2x, V1y, and V2y can be eliminated. For this purpose, the operation rot rot will be applied to Eqs. (16) and
(17) and the vector equations obtained as a result of this operation will be projected to the z axis. As a result, we
will obtain a system of four equations for the vertical velocity components V1z and V2z and the temperature pertur-
bations θ1 and θ2:

∂
∂t

 (∆V1z) = R1∆1θ1 − ∆V1z ,

∂
∂t

 (∆V2z) = R2∆θ2 − 
σ1

σ2
 ∆V2z ,

Pr1 
∂θ1

∂t
 = ∆θ1 + V1z ,

Pr2 
∂θ2

∂t
 = q∆θ2 + V2z ,

(21)

where ∆1 = 
∂2

∂x2 + 
∂2

∂y2 is a plane Laplacian.

The boundary conditions follow from (7)–(14).
In the simplest case where the lower and upper boundaries of a snow cover are impenetrable, the boundary

conditions for Vz take the form

at   z = 0   and   z = 1     V1z (0) = 0   and   V2z (1) = 0 ; (22)

if the upper boundary is opened,

at   z = 0   and   z = 1     V1z (0) = 0   and   V2z
 ′  (1) = 0 . (23)

In both cases, we obtain the following conditions for the temperatures:
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θ1 (0) = 0 ,   θ2 (1) = 0 . (24)

The conjugation conditions (13)–(15) lead to the relations

θ1 




h1

H



 = θ2 





h1

H



 ,

λ1θ1
′  





h1

H



 = λ2θ2

′  




h1

H



 ,

f1σ1V1z 




h1
H




 = f2σ2V2z 





h1

H



 .

(25)

We will find particular solutions of the system of Eqs. (21), defining the normal perturbations that change ex-
ponentially with time and are periodic in the plane (x, y):

V1z (x, y, z, t) = V1 (z) exp [− λt + i (k1x + k2y)] ,

V2z (x, y, z, t) = V2 (z) exp [− λt + i (k1x + k2y)] ,

θ1 (x, y, z, t) = Θ1 (z) exp [− λt + i (k1x + k2y)] ,

θ2 (x, y, z, t) = Θ2 (z) exp [− λt + i (k1x + k2y)] .

(26)

Here, k1 and k2 are real wave numbers characterizing the periodicity of perturbations along the x and y directions and
V1(z), V2(z), Θ1(z), and Θ2(z) are amplitudes of these perturbations.

Substituting (25) into (21) gives a system of ordinary, linear, homogeneous differential equations for the am-
plitudes of the perturbations:

− λ (V1
 ′′ − k

2
V1) = (V1

 ′′ − k
2
V1) + k

2
R1Θ1 ,   0 < z < 

h1

H
 ; (27)

− λ (V2
 ′′ − k

2
V2) = 

σ1

σ2
 (V2

 ′′ − k
2
V2) + k

2
R2Θ2 ,   

h1

H
 < z < 1 ; (28)

− λ Pr1Θ1 = (Θ1
′′ − k

2Θ1) + V1 ,   0 < z < 
h1

H
 ; (29)

− λ Pr2Θ2 = (Θ2
′′ − k

2Θ2) + V2 ,   
h1

H
 < z < 1 . (30)

Here, the prime denotes the differentiation with respect to z, and k2 = k1
2 + k2

2.
The boundary conditions follow from (22)–(24) and the conjugation conditions (25): when z = 0 and z = 1 at

an impenetrable boundary,

V1 (0) = 0 ,   V2 (1) = 0 ; (31)

if the lower boundary of the snow cover is impenetrable and its upper boundary is penetrable,

V1 (0) = 0 ,   V2
 ′ (1) = 0 . (32)
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The amplitude values of the temperature should satisfy the conditions

Θ1 (0) = 0 ,   Θ2 (1) = 0 . (33)

The conjugation conditions take the form

V2 




h1

H



 = 

f1σ1

f2σ2
 V1 





h1

H



 , (34)

Θ2 




h1

H



 = Θ1 





h1

H



 ,     Θ2

′  




h1

H



 = 

λ1

λ2
 Θ1

′  




h1

H



 . (35)

A nontrivial solution of problem (27)–(35) can be obtained only at certain values of λ representing eigenval-
ues of this problem; the corresponding eigenfunctions are the amplitudes of the perturbations V1(z), V2(z), Θ1(z), and
Θ2(z). Thus, the boundary-value problem (27)–(35) determines the spectrum of characteristic perturbations of the air
equilibrium in a snow cover.

NOTATION

cp, heat capacity of air at a constant pressure, J/(kg⋅deg); cs1, cs2, heat capacities of the snow layers,
J/(kg⋅deg); ez, unit vector along the z axis; f1 and f2, porosity coefficient of the lower and upper snow layers; g, free
fall acceleration, m/sec2; H, total thickness of a snow cover, m; h1 and h2, thicknesses of the lower and upper snow
layers, m; k, wave number, m−1; k1 and k2, real wave numbers along the x and y axes, m−1; Ls, specific heat of ice
evaporation, J/kg; p1 and p2, pressure of the air contained in the lower and upper layers, Pa; p

_
1 and p

_
2, dimensionless

pressures; Pr1, Pr2, Prandtl numbers; Rw, gas constant of the water vapor, J/(kg⋅deg); T0 = 273 K; t, time, sec; t
_
, di-

mensionless time; V1 and V2, mass velocities of the air in the lower and upper snow layers, m/sec; V
__

1 and V
__

2, di-
mensionless velocities; V1(z) ,  V2(z), dimensionless amplitudes of the air-velocity perturbations; Vx, Vy, Vz, velocity
components directed along the coordinate axes, m/sec; z, vertical coordinate, m; z

_
, dimensionless coordinate; β, coeffi-

cient of thermal air expansion, deg−1; γ10, γ20, equilibrium temperature gradients in the snow layers, deg/m; ∆, Laplace
operator; θ1 and θ2, small variations of the temperature in the lower and upper snow layers, oC; θ

__
1, dimensionless

temperature; θ1st, θ2st, stationary temperature fields of the snow, oC; θ10 and θ20, temperature of the lower and upper
bases of the snow cover, oC; Θ1(z) and Θ2(z), dimensionless amplitudes of the temperature perturbations in the lower
and upper snow layers; χ1, χ2, thermal diffusivity of the snow, m2/sec; λ, decrement, sec−1; λ1, λ2, heat-conductivity
coefficients of the snow, J/(m⋅sec⋅deg); ν, kinematic viscosity of the air, m2/sec; ρ0, density of the air, kg/m3; ρs1,
ρs2, density of the snow layers, kg/m3; ρw0, saturated-vapor density at 0oC, kg/m3; σ1, σ2, penetrability coefficients of
the snow, m2. Subscripts: st, stationary; s, snow; w, water vapor.
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